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Misaligned Antenna Phase-Center Determination
Using Measured Phase Patterns

A. Prata, Jr.1

When an antenna is first mounted on a test range and its radiation pattern
measured, invariably one finds that the antenna is improperly aligned. In other
words, the test positioner is not rotating about the antenna phase center (defined
in some appropriate sense). Since for a variety of reasons it is desirable to measure
the antenna by rotating about its phase center, a procedure is needed for its location.
In this article, a method for locating the phase center of an antenna, from phase
patterns measured on a misaligned antenna, is presented.

I. Phase Error of a Misaligned Antenna

Consider Figs. 1 and 2 depicting the location of the phase center of the antenna under test (AUT), the
illuminating antenna phase-center location, and three relevant coordinate systems, which relate to each
other through the equations

Ip=2pcos¢ — jpsing (1)
Jp = Tpsin¢ + Y cos ¢ (2)
ip=ip (3)
and
i=ip (4)
9= ypcost — Zpsinf (5)
Z={gpsinf + Zp cosf (6)

where the hats denote unit vectors.
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Fig. 1. Radiation-pattern measurement geometry.
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Fig. 2. Relevant coordinate systems of the radiation-pattern measurement geometry and associated
movements: (a) antenna-under-test displacement, (b) test positioner axial rotation, and (c) test positioner
azimuthal rotation.

The AUT is mounted on a test positioner with axial rotation (i.e., ¢) and azimuth (i.e., #) orientation
capabilities. In an experimental setup the principal coordinate system direction & is usually perpendicular
to the ground. The illuminating antenna is located near the z-axis, at a distance R from the three
coordinate systems’ origin. Note that the particular geometry that should be considered in an analysis
depends both on the measurement setup and on how the AUT is mounted. Here only the measurement
setup just described is being considered.

The AUT radiation pattern is measured by incrementing the spherical angle  (with a constant ¢
value) while the complex signal received by the AUT is recorded. As depicted in Fig. 2, misalignment
causes the phase center of the AUT to be displaced by a small vector

—

R =K, +A,+A, (7)

from the positioner rotation point (PRP). Furthermore, the illuminating antenna misalignment also causes
its phase center to be displaced from the z-axis by a small vector Rj:



,é[ = (;;v + gy (8)

Since the AUT phase center is not properly aligned with the PRP, and the illuminating antenna is not
along the z-axis, when the AUT pattern is measured a spurious phase error will be produced. Assuming
an implicit e/“! time-harmonic regimen, the measured AUT phase pattern ®(6, ¢) is given by

®(0,¢) = —ko|R — R'| + F(6, ¢) (9)

where kg is the free-space wave number (ko = 27/\g, where Aq is the free-space wavelength), and F(0, ¢)
is the phase pattern of the AUT when its phase center coincides with the PRP. Using Eqgs. (7) and (8),
one has from Figs. 1 and 2

R-—R =08, 24++0,§+R2—DAp2p—Dyir — A 2p (10)

which yields

—

R—-FR

= [(+0:% + 0§ + R2 — Apip — Ayir — AL2p)
(4008 + 06,9 + R2 — Dpdip — Ay i — Auzp) ] (11)

Now, from Egs. (1) through (6), one has

T ==apcos¢p —grsing (12)
= Zpsingcosh + yp cospcost — Zpsin b (13)
2 =2psingsing + §g cospsinf + Zg cos 6 (14)

and, hence, Eq. (11) becomes

‘Rfé’

= [R2 + 2Rsin ¢sinf (6, cos ¢ + §, singcosf — A,)
+2Rcos¢sin® (—0;sing + d, cospcosd — Ay) +2Rcosf (—0,sinf — A,)

+ (6y cos@ + d, singpcosd — Ag)? + (=0, sing + dy cos ¢ cosf — Ay)2
1/2
+ (=8, 5in0 — A.)°] (15)

This equation can be rewritten as



3 2Al.sin¢sin€+Aycos¢sin9+AZc080
R

n (6, cos ¢+ 8, sinpcosf — A,)? N (=0, sing + §, cos pcos — A,)?

R? R?
. 1/2
(=6, sinf — A,)?
+ 72 z (16)
Since in practice A,, Ay, A, 0,0, << R, the above expression approximates to?
’ﬁ—ﬁ' ~R—A;singsing — Ay cos¢sinf — A, cosf (17)

Observe that the d, and d, of Eq. (16) have R? factors in their denominator and hence are not present
in Eq. (17); they are then insignificant. Substituting the above result in Eq. (9) then yields

®(0,¢) =~ —ko[R— Apsingsing — Ay cospsing — A, cos0] + F (0, §) (18)

This equation shows that the measured phase ®(6, ¢) is sensitive only to the phase-center displacements
that occur in the measurement plane. In other words, when ¢ = 0 deg, the measured phase ®(6,0 deg)
is sensitive only to A, and A, and when ¢ = 90 deg the measured phase ®(6,90 deg) is sensitive only
to A, and A,. This fact will be used in the next section to determine the A,, A,, and A, values from
measured phase patterns.

Il. Phase-Center Determination

If the AUT were a perfect spherical-wave source, one would obtain a phase pattern [given by Eq. (18)]
with a 6 and ¢ independent F'(, ¢). Introducing then a constant C = —kogR + F (0, ¢), one can write, for
a perfect spherical wave source,

®(0,9) = ko(Agsingsind + A, cospsind + A, cosf) + C (19)

However, since the AUT does not radiate a perfect spherical wave, in general the above equation can be
expected to hold for only four spatial directions (since the equation has only four degrees of freedom,
namely A,, Ay, A, and C).

Now let’s assume that phase pattern measurements are made at ¢ = 0 deg and ¢ = 90 deg. In these
two situations, the above equation becomes

D(0) ~ ko(A¢sind + A, cosd) + C (20)

where A, corresponds to A, or A, for ¢ = 0 deg or ¢ = 90 deg, respectively. Since this equation has
three degrees of freedom, it can be enforced at three pattern points to yield

2 This approximation is excellent even in the improbable situation where u = 2A, .. /R is comparable to 1. For instance,
when u = 0.4, the error incurred in v/1+ u =~ 1+ u/2 is only 1.4 percent.



Oy = ko(Assinby + A, cosby) + C (21)
Dy = ko(Assinby + A, cosbz) + C (22)
®3 = ko(Assinfs + A, cosbs) + C (23)

where @1, @, and P35 are measured phase values (in radians) at the angular positions 6, 63, and 65,
respectively.

This system can be solved for A;, A,, and C. To accomplish this, the value of C' given by Eq. (22),
namely

C =Dy — ko (Arsinby + A, cosbs) (24)
is substituted in Egs. (21) and (23) to yield
Dy — Py = ko [At (sinfy —sinfq) + A, (cos O3 — cos 91)] (25)
Dy — B3 = ky [At (sinfly — sinf3) + A, (cos 2 — cos 93)] (26)
Solving this pair of equations yields the desired A; and A, as

A — 1 (®y — P3)(sin by — sinfy) — (P — @) (sin by — sin O3) (27)
® ko (cosfy — cosB3)(sinfy — sin ;) — (cos B — cos 61)(sin Oy — sin 63)

1 (P — @) (cos by — cosbs) — (Py — P3)(cos By — cosby) (28)
ko (cos @y — cosf3)(sinfy — sinfy) — (cos o — cos 1) (sin Oy — sin O3)

Ay

In summary, from a constant ¢ value radiation pattern phase measurement towards three directions
[i.e., @1, Po, and D3, towards (01, d), (02, ), and (03, @), respectively], the phase constant C, the axial
phase-center displacement A, and the lateral phase-center displacement A; (in the measurement plane)
can be determined using Eqgs. (24), (27), and (28).

Observe that two lateral displacements (i.e., A, and A,) are needed to completely characterize the
phase-center location, and for this another three sets of constant ¢+ 90-deg-value radiation-pattern phase
measurements towards three directions [i.e., 1, ®3, and P3, towards (61, ¢+ 90 deg), (02, »+90 deg), and
(03, ¢+ 90 deg), respectively] are needed. This new set of measurements will also yield C and A, values.
However, because of the variation of the radiation pattern with ¢, these two new values will in general
be different than the previously determined two values. How to handle this, as well as other details that
stem from the practical application of the above equations, is better demonstrated through an example.
This is done in the next section.

lll. Application Example

Figures 3 and 4 depict the far-zone co-polarized radiation patterns of a typical linearly polarized cor-
rugated horn (according to Ludwig’s third polarization definition). These particular patterns correspond
to the CloudSat spacecraft [1] test horn, shown in Fig. 5. The ¢ = 0 deg, ¢ = 45 deg, and ¢ = 90 deg planes
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Fig. 5. CloudSat corrugated test horn.

correspond to the E-, D-, and H-planes, respectively. These patterns were computed rotating the horn
about the phase-center point depicted in Fig. 5, at a frequency of 94.05 GHz (\¢ = 3.1876 mm). Observe
that, since the purpose of this horn is to illuminate a reflector system, this phase-center location produces
essentially a constant phase (within about +3 deg) over a pattern amplitude range of 11 dB (angular
region with —17.6 deg < 6 < 4+17.6 deg). In other words, the phase center is here defined as the point that
minimizes that radiation pattern phase variation over the angular region with —17.6 deg < 6 < +17.6 deg.
From Fig. 4 it can be seen that, at each constant ¢ plane, the phase is equal to zero at five points. Imposing
the condition that the phase be zero at § = —16.73 deg, 0 deg, and +16.73 deg on the D-plane (i.e., plane
with ¢ = 45 deg) then locates the phase center as shown in Fig. 5 and produces the plot shown in Fig. 4.

Consider now the phase patterns depicted in Fig. 6. These radiation patterns were computed rotating
the horn about a point with A, = +127 pum, A, = 4+63.5 pum, and A, = +635 pm (see Figs. 1 and 2).
To demonstrate the application of the previously derived phase-center location equations, these values
of Az, Ay, and A, are retrieved below by applying the formulas derived in the previous section to the
patterns depicted in Fig. 6.

From the points marked in the E-plane pattern of Fig. 6, one obtains
®p1 = +65.12 deg at §; = —16.73 deg
Dpo = + 71.72 deg at #; = 0.00 deg
Pp3 = + 73.38 deg at 03 = +16.73 deg
which yields, after substituting in Egs. (27), (28), and (24), the parameters of the E-plane phase center:
Ag, = +516.69 pm

AEw

+ 127.04 pm

Cg = +13.37 deg
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Fig. 6. CloudSat corrugated test horn co-polarized far-zone radiation-
pattern phase for Ay = +127 pm, Ay = +63.5 um, and A; = +635 ym at
94.05 GHz.

Similarly, from the H-plane pattern of Fig. 6, one obtains

P = +66.07 deg at 0, = —16.73 deg

Do = +71.72 deg at 0 = 0.00 deg

D3 = +70.20 deg at 03 = +16.73 deg
and hence the parameters of the H-plane phase-center location are

Apg, = +749.93 um
Apgy = +63.52 um

Cyg = —12.98 deg

As expected from Fig. 4, the E- and H-plane phase centers differ slightly (i.e., Ag, # Ap, and
Cg # Cp). The best phase-center location is then a compromise between the two phase centers. Taking
the average of the above two A, and C' values yields the phase-center location as

A, = 4+127.0 pm
Ay = +63.5 um
A, = +633.3 um

C= +0.2deg



which compares very well with the expected values of A, = 4127 pm, Ay = +63.5 um, A, = 4635 pm,
and C' = 0 deg.

IV. Conclusion

An expression for the phase error inflicted on the measured radiation pattern of an improperly aligned
antenna has been derived. From this result a procedure for determining the antenna phase-center location
has been presented. The procedure usage and accuracy is successfully demonstrated through an example
using a computed corrugated horn far-zone radiation pattern.
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